Scalar Curvature Bound for Kähler-Ricci Flows over Minimal Manifolds of General Type
نویسنده
چکیده
would imply the metric flow above. They are indeed equivalent to each other by the basics on the existence and uniqueness of these flows (as summarized in [7], for example). Without further clarification, all the constants appearing later are positive. The same letter might stand for different (but fixed) constants at different places. By direct Maximum Principle argument, this equation above already gives
منابع مشابه
(kähler-)ricci Flow on (kähler) Manifolds
One of the most interesting questions in Riemannian geometry is that of deciding whether a manifold admits curvatures of certain kinds. More specifically, one might want to know whether some given manifold admits a canonical metric, i.e. one with constant curvature of some form (sectional curvature, scalar curvature, etc.). (This will in fact have many topological implications.). One such probl...
متن کاملScalar Curvature Behavior for Finite Time Singularity of Kähler-ricci Flow
Ricci flow, since the debut in the famous original work [4] by R. Hamilton, has been one of the major driving forces for the development of Geometric Analysis in the past decades. Its astonishing power is best demonstrated by the breakthrough in solving Poincaré Conjecture and Geometrization Program. For this amazing story, we refer to [1], [7], [10] and the references therein. Meanwhile, Kähle...
متن کاملA Property of Kähler-Ricci Solitons on Complete Complex Surfaces
where Rαβ(x, t) denotes the Ricci curvature tensor of the metric gαβ(x, t). One of the main problems in differential geometry is to find canonical structure on manifolds. The Ricci flow introduced by Hamilton [8] is an useful tool to approach such problems. For examples, Hamilton [10] and Chow [7] used the convergence of the Ricci flow to characterize the complex structures on compact Riemann s...
متن کاملUniqueness of Ricci Flow Solution on Non-compact Manifolds and Integral Scalar Curvature Bound
of the Dissertation Uniqueness of Ricci Flow Solution on Non-compact Manifolds and Integral Scalar Curvature Bound
متن کاملOn the Complex Structure of Kähler Manifolds with Nonnegative Curvature
We study the asymptotic behavior of the Kähler-Ricci flow on Kähler manifolds of nonnegative holomorphic bisectional curvature. Using these results we prove that a complete noncompact Kähler manifold with nonnegative bounded holomorphic bisectional curvature and maximal volume growth is biholomorphic to complex Euclidean space C . We also show that the volume growth condition can be removed if ...
متن کامل